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ABSTRACT The implementation of the Koopman operator on digital computers often relies on the
approximation of its action on finite-dimensional function spaces. This approximation is generally done by
orthogonally projecting on the subspace. Extended Dynamic Mode Decomposition (EDMD) is a popular,
special case of this projection procedure in a data-driven setting. Importantly, the accuracy of the model
obtained by EDMD depends on the quality of the finite-dimensional space, specifically on how close it is to
being invariant under the Koopman operator. This paper presents a data-driven algebraic search algorithm,
termed Recursive Forward-Backward EDMD, for subspaces close to being invariant under the Koopman
operator. Relying on the concept of temporal consistency, which measures the quality of the subspace, our
algorithm recursively decomposes the search space into two subspaces with different prediction accuracy
levels. The subspace with lower level of accuracy is removed if it does not reach a satisfactory threshold.
The algorithm allows for tuning the level of accuracy depending on the underlying application and is endowed
with convergence and accuracy guarantees.

INDEX TERMS Accuracy bound, algebraic algorithm, dynamic mode decomposition, invariant subspace,
Koopman operator, unknown nonlinear system.

I. INTRODUCTION
Koopman operator theory has emerged as an alternative
viewpoint of dynamical systems by encoding nonlinear
behavior as a linear operator acting on a vector space of
functions. This viewpoint allows for the use of spectral
methods to analyze nonlinear systems. A major appeal
of Koopman operator theory comes from the fact that it
provides a unified framework to study general nonlinear
systems, since the operator is always linear independently
of the system’s structure. This has led to a broad range
of applications, specially in data-driven learning. A major
challenge, however, is that the operator is often defined on
infinite-dimensional spaces, thus requiring infinite compu-
tational/memory capabilities unless additional structure is
identified/imposed. A popular way to address this challenge
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is to approximate the operator’s action on finite-dimensional
spaces. The accuracy of this approximation depends on how
close the finite-dimensional subspace is to being invariant
under the Koopman operator. In this paper, we consider the
problem of identifying close-to-invariant subspaces from data
with tunable levels of accuracy.

A. LITERATURE REVIEW
Koopman operator theory represents a nonlinear dynamical
system via a linear operator acting on a vector spaces of
functions [1], [2]. This operator-based viewpoint naturally
lends itself to spectral methods [3], [4] with algebraic
descriptions that are much easier to analyze for complex
systems compared to traditional geometric state-space rep-
resentations [5]. This has led to many applications in a
number of different fields. In complex system analysis, the
Koopman operator has been used in model reduction [6], [7],
[8], and the study of fluid flows [9], [10], [11], biological
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systems [12], [13], [14], [15], power networks [16], [17], [18],
traffic systems [19], [20], [21], and fault detection in complex
systems [22], [23], [24]. Recent works utilize Koopman
operator in cryptography [25] and signal processing [26].
In systems and control theory, the Koopman operator has seen
a recent surge in popularity in both theoretical and practical
domains. In particular, the work [27] provides several criteria
for global stability of attractors based on the eigenfunctions
of the Koopman operator associated with the system. The
work [28] studies the relationship betweenKoopman operator
and contraction theory. The work [29] provides a Koopman-
based data-drivenmethod to approximate auxiliary functions,
including Lyapunov functions used for stability analysis of
attractors. In addition, [30], [31] take different approaches
to learn Lyapunov functions. Koopman-based methods have
also found their way in the stability analysis of switched
nonlinear systems [32] and the estimation of regions of
attraction [33], [34], [35], [36]. Although the original
definition of Koopman operator does not allow for inputs
to the system, the theory has been extended to control
systems [6], [37], [38], [39], allowing for the utilization of
tools from control theory such as feedback linearization [40],
control Lyapunov functions [41], optimal control [42],
[43], [44], [45], robust control [46], and eigenstructure
assignment [47]. The advances in control have also led to
applications in general areas of robotics [48], [49], [50],
[51] as well as specific applications in soft robots [52], [53],
nano-positioning systems [54], micro-electromechanical sys-
tems [55], sensing [56], pose estimation [57], trajectory
tracking [58], and space applications [59]. Other works
have relied on Koopman operator theory for safety critical
control [60], [61], [62] and reachability analysis [63], [64],
[65], [66], [67].

Given the infinite-dimensional nature of the Koopman
operator, many applications above rely on representations on
finite-dimensional spaces. In general, it is very difficult, and
in some cases impossible, to find exact and informative linear
finite-dimensional representations based on the Koopman
operator (we refer the reader to [68] and [69] for results
on the existence or non-existence of such representations).
To address this, one often relies on finite-dimensional
approximated models. Such approximations are generally
constructed by composing the Koopman operator with a pro-
jection operator on the subspace of choice [70, Section 1.4].
Dynamic Mode Decomposition (DMD) [71] and its variant
Extended Dynamic Mode Decomposition (EDMD) [72] are
special cases of such projection-based methods. In particular,
EDMD performs a data-driven orthogonal projection on a
finite-dimensional space spanned by a predefined dictionary
of functions. The work [73] studies the asymptotic properties
of EDMD’s solutions and their connection to the Koopman
operator in cases where the size of the data set or the
subspace’s dimension go to infinity. Moreover, [74] provides
probabilistic bounds on EDMD’s accuracy given finite data
sets.

Although finite-dimensional approximations of the Koop-
man operator are sought for their computational efficiency,
the projection used for the approximation leads to two related
but distinctly important problems: (i) the approximation can
introduce spurious eigenfunctions, (ii) the approximation
of arbitrary functions (not necessarily approximated eigen-
functions) suffers from errors resulting from the truncation.
Even though these problems are closely related and have
the same root, depending on the application at hand, one
is more pronounced that the other. In applications that
involve the spectral decompositions as a way of extracting
important information from large-scale systems (such as
model reduction for PDEs and applications in fluid dynamics,
e.g. [8], [9], [10], and [11], or stability analysis, e.g [27]),
directly addressing the spurious eigenfunctions, which lead
to non-physical behavior, plays a central role (whereas the
loss of information for arbitrary functions is more tolerable).
On the other hand, for cases where the Koopman-based
model is used for prediction of arbitrary functions (not
just approximated eigenfunctions) and accuracy bounds are
required, one should pay special attention to the prediction of
all functions, which include the approximated eigenfunctions
and all their linear combinations (see. e.g. [39]). Below, we
briefly discuss different methods employed in the literature
to address the aforementioned problems.

A simple observation reveals that on a Koopman-invariant
subspace, the aforementioned problems do not arise, since the
projection does not introduce any errors. Therefore, one often
seeks to identify Koopman-invariant subspaces or subspaces
that are close to invariant [75]. To this end, one can identify
or approximate Koopman eigenfunctions and then use them
to build approximately invariant subspaces [76], [77]. On the
other hand, one can use optimization-based methods to
learn approximate Koopman-invariant subspaces via neural
networks [78], [79], [80] or rank-constraint semi-definite
programs [81].
Alternatively, instead of relying on optimization, our

previous work [82], [83] has used the algebraic structure
of the Koopman operator and its eigenfunctions to provide
data-driven necessary and almost surely sufficient conditions
for identification of all Koopman eigenfunctions in any
arbitrary finite-dimensional space of functions and synthe-
sized algorithms to identify the maximal Koopman-invariant
subspace in the original space. Subsequently, [84] designed
an algebraic algorithm to identify subspaces that are close
to invariant with tunable level of accuracy, accompanied by
finite-iteration convergence guarantees. The aforementioned
work uses the concept of invariance proximity to provide
bounds on the relative approximation error of all functions
(not necessarily eigenfunctions) in the identified subspace.

A different line of work that is more focused on identifying
the spectral properties of the Koopman operator and address-
ing the spectral pollution and spurious eigenvalues is [85],
which relies on the concept of Ritz residuals to measure the
accuracy of eigenpairs and uses low-rank approximations to
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improve the DMD method. The work [86] uses a similar
residual term to measure the accuracy of eigenfunctions
identified by DMD method. On the other hand, [87] blends
these residual accuracy measures with a sparsity promoting
optimization approach to identify accurate approximate
eigenfunctions that are also informative, that is, their span
is close to observables of choice (e.g. the system’s state
variables). An interesting, more recent line of work is residual
Dynamic Mode Decomposition (ResDMD) [88], [89], which
uses a similar concept of residuals to handle spectral
pollution. ResDMD also provides methods to approximate
the psuedospectra of the Koopman operator and provides
various spectral bounds.

In this paper, we consider the use of EDMD forward
and backward in time to approximate Koopman invariant
subspaces with tunable accuracy. Throughout the literature,
executing (E)DMD forward and backward in time has
been used for different purposes, such as dealing with
noisy data [90], [91], [92], training neural networks [93],
and providing necessary and sufficient conditions on the
identification of Koopman eigenfunctions [82]. Recently,
we have employed in [94] EDMD forward and backward in
time to introduce an error metric termed consistency index
which computes a tight bound on the worst-case relative
Koopman prediction error on a subspace.

B. STATEMENT OF CONTRIBUTIONS
We consider the problem of approximating Koopman-
invariant subspaces from data. To this end, we present
a recursive algebraic algorithm that searches through a
vector space of functions (termed search space) and
finds approximate subspaces close to invariant under the
Koopman operator, whose accuracy can be tuned using
a parameter. The proposed algorithm, termed Recursive
Forward-Backward EDMD (RFB-EDMD), first checks the
accuracy of Koopman-based predictions on the search space
and, if it does not meet the desired level, decomposes
the search space into two different vector spaces, and
removes the one leading to the maximum error. RFB-EDMD
iteratively performs the aforementioned divide and prune
procedure until the remaining subspace meets the desired
level of accuracy. We show that RFB-EDMD finds the
solution in finitely many iterations and that the relative error
of the Koopman-based EDMD predictor on the resulting
subspace is bounded by the chosen accuracy parameter for
all (uncountably many) functions in the identified subspace.
In addition, we prove that RFB-EDMD always retains all
Koopman eigenfunctions in the search space for all values
of the accuracy parameter. RFB-EDMD naturally leads to
an accuracy hierarchy on the subspaces of the search space
in the form of a nested sequence of subspaces whose
Koopman-prediction accuracy ranges from exact to the least
accurate (which is the entire search space). All the members
of this hierarchy are accessible through the choice of accuracy
parameter tuned by the user based on the specific underlying

application. Finally, we demonstrate the versatility of the
RFB-EDMD algorithm in capturing accurate and relevant
dynamical information in a planar nonlinear system, the Van
der Pol oscillator, the Duffing equation, and a 7-dimensional
example describing yeast glycolysis.

We finish by describing the differences between the present
work and the Tunable Symmetric Subspace Decomposition
(T-SSD) algorithm proposed in our previouswork [84].While
the T-SSD algorithm requires custom-made subroutines, the
RFB-EDMD algorithm relies on well-established numerical
routines that are highly efficient and robust to numerical
errors and can be easily implemented on parallel process-
ing hardware. Moreover, given the same accuracy level,
RFB-EDMD finds more expressive subspaces (with larger
dimension) as compared to T-SSD. Finally, RFB-EDMD
enjoys additional theoretical properties as it establishes an
accuracy hierarchy on identified subspaces.

C. NOTATION
We represent the sets of natural, real, and complex numbers
by N, R, and C, respectively. Given the sets S1 and S2 and
the point x, the notation x ∈ S1 means x is a member of S1;
S1 ∪ S2, S1 ∩ S2, and S1 \ S2 denote the union, intersection,
and set difference of S1 and S2. In addition, S1 ⊆ S2 and
S1 ⊊ S2 mean that S1 is a subset and proper subset of S2,
respectively. Considering matrix A ∈ Rm×n, we represent its
transpose, range space, number of columns, pseudo-inverse,
and Frobenius norm by AT , R(A), ♯cols(A), A†, and ∥A∥F ,
respectively. In addition, if A is a square matrix, A−1 denotes
its inverse (upon existence), spec(A) denotes its spectrum (set
of eigenvalues), and sprad(A) := max{|λ| | λ ∈ spec(A)}
denotes its spectral radius. Moreover, if all eigenvalues of A
are real, then λmax(A) represents its largest eigenvalue. The
symbols Im and 0m×n represent the m × m identity matrix
and m × n zero matrix. For convenience, we suppress the
indices when the context is clear. Given the vector v ∈
Cn, we use ∥v∥2 to denotes its 2-norm. Given the abstract
vector space V defined on the field C, we represent its
dimension by dimV . Note that in this paper, the members
of V can be functions or n-tuples of R or C. Given S
a subset of vector space V , span(S) represents the vector
space comprised of all linear combinations of the elements
of S. Given functions f : A → B and g : B → C ,
g ◦ f : A → C denotes their composition. Given the set
X equipped with measure µ, the space of square-integrable
functions is denoted by L2(µ) and is equipped with inner
product ⟨f , g⟩ :=

∫
X f ḡ dµ, where ḡ denotes the complex

conjugate of function g. Moreover, we denote by ∥·∥L2(µ) the
norm induced by the aforementioned inner product on space
L2.

II. PRELIMINARIES
In this section, we discuss some preliminary definitions and
results regarding the Koopman operator, Extended Dynamic
ModeDecompositionmethod, and the concept of consistency
index which we use frequently throughout the paper. The
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reader familiar with these concepts and their mathematical
properties can safely skip this section.

A. KOOPMAN OPERATOR
Here, we briefly review the Koopman operator associated
with a dynamical system and its properties following the
terminology in [5]. Consider the following discrete-time
system

x+ = T (x), (1)

with state spaceM ⊆ Rn. Let F be a vector space (defined
on the field C) comprised of complex-valued functions with
domain M. Moreover, let F be closed under composition
with the map T , i.e., for all f ∈ F , we have f ◦ T ∈ F .
Then, we define the Koopman operator as

Kf = f ◦ T . (2)

One can easily verify that (2) is a linear operator, i.e.,

K(αf + βg) = αKf + βKg, ∀f , g ∈ F , ∀α, β ∈ C.

(3)

A nonzero function φ ∈ F is an eigenfunction of K with
eigenvalue λ ∈ C if

Kφ = λφ. (4)

An important property of the Koopman operator is that
the value of eigenfunctions evaluated on system’s trajectories
behave as solutions of linear difference equations, i.e., given
the trajectory {x(i)}∞i=0 of (1), and the eigenfunction (4),

φ(x(i)) = λφ(x(i− 1)), ∀i ∈ N. (5)

We refer to (5) as temporal linear evolution of eigenfunctions.
This temporal linearity of eigenfunctions combined with the
linearity of the operator on F defined in (3) enables us to
linearly predict function values on system trajectories.

However, one should keep in mind that the space F
is generally infinite-dimensional; therefore, the knowledge
of finitely many eigenfunctions (even if they exist) does
not necessarily lead to capturing complete information
about the system’s behavior. Instead, one usually settles
on approximations on finite-dimensional subspaces. Before
discussing such approximations, we recall the notion of
subspace invariance under the Koopman operator, which
plays a key role in determining finite-dimensional forms
under the Koopman operator. A subspace G ⊆ F is Koopman
invariant if, for all f ∈ G, we have Kf ∈ G. Note that the
notion of subspace invariance is independent of the choice of
basis for the subspace.

B. EXTENDED DYNAMIC MODE DECOMPOSITION
The Koopman operator is generally infinite dimensional and
therefore is not directly amenable to implementation on
computer hardware. At the same time, we are interested
in extracting the system’s properties from data. Here
we discuss the Extended Dynamic Mode Decomposition

(EDMD) method that seeks to address the issues of infinite-
dimensionality and information extraction from data [72].
EDMD uses data to approximate the action of the operator
on a given finite-dimensional space of functions. To specify
the function space, EDMD uses a dictionary comprised of
Nd functions formM to R. Formally, we define D :M →

R1×Nd as1

D(x) = [d1(x), . . . , dNd (x)], ∀x ∈M,

where d1, . . . , dNd ∈ F are the dictionary elements.
To approximate the behavior of the Koopman operator (and
therefore the system) on span(D), EDMD uses data snapshots
from the system trajectories in two data matrices X ,Y ∈
RN×n such that

yi = T (xi), ∀i ∈ {1, . . . ,N }, (6)

where xTi and yTi are the i th rows of matrices X and Y
respectively. For convenience, we define the action of the
dictionary on data matrix X (and similarly for any data
matrix) as

D(X ) = [D(x1)T ,D(x2)T , . . . ,D(xn)T ]T .

Note that based on (2) and (6), one can see

D(Y ) = D ◦ T (X ) = KD(X ),

where KD := [Kd1, . . . ,KdNd ]. Hence, the dictionary
matricesD(X ) andD(Y ) capture the behavior of the Koopman
operator on span(D). EDMD estimates the action of the
operator by solving a least-squares problem

minimize
K
∥D(Y )− D(X )K∥F , (7)

which has the following closed-form solution

KEDMD = EDMD(D,X ,Y ) := D(X )†D(Y ). (8)

Throughout this paper, we make the following assumption.
Assumption 1: (Full Rank Dictionary Matrices): D(X )

and D(Y ) have full column rank. □
Note that Assumption 1 implies that the element ofD form

a basis for span(D). Also, it implies that data in X and Y are
diverse enough to distinguish between functions in span(D),
i.e., there are not two functions with the same exact evaluation
on data matrices. If Assumption 1 holds,KEDMD is the unique
solution of (7).
The matrix KEDMD captures important information about

the system’s behavior and can be used to approximate the
action of the Koopman operator on span(D). Formally, for
an arbitrary function f ∈ span(D) with the representation
f (·) = D(·)vf for vf ∈ CNd , we can define the EDMD
approximation of Kf as

PKf (·) = D(·)KEDMDvf . (9)

1span(D) contains complex-valued functions since the function space
is defined on the field C. However, the functions in the dictionary itself
are chosen to be real-valued to simplify the computation without loss of
generality.
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Remark 1 (EDMD is an Orthogonal Projection): Note
that PKf ∈ span(D) is the orthogonal projection (thus the
best approximation) of Kf on span(D) with respect to the
inner product on space L2(µX ) where µX =

1
N

∑N
i=1 δxi and

δxi is the Dirac measure defined on xi (the ith row of data
matrix X ). We refer the reader to [73] and [95] for more
information. □
Given an eigenvector v ∈ CNd of KEDMD with eigenvalue

λ, one can write the EDMD approximation of the function
Kφ with φ(·) = D(·)v as

PKφ(·) = D(·)KEDMDv = λD(·)v = λφ,

which has a form similar to definition of Koopman eigen-
functions, cf. (4). In fact, this is not a coincidence, since
every Koopman eigenfunction in span(D) corresponds to an
eigenvector of KEDMD.
Lemma 1 (EDMD Captures All Koopman Eigenfunctions

in span(D) [82, Lemma 4.1]): Let φ(·) = D(·)vφ be a
Koopman eigenfunction with eigenvalue λ where vφ ∈ CNd \

{0}. Then, vφ is an eigenvector of KEDMD, cf. (8), with the
same eigenvalue, i.e., KEDMDvφ = λvφ . □
Lemma 1 shows that EDMD captures all exact eigenfunc-

tions in the span of the dictionary. Lemma 1 is independent of
data sampling as long as Assumption 1 holds. In other words,
given sufficient amount of data, the samplingmethod does not
matter in identification of exact Koopman eigenfunctions.
Remark 2 (Converse of Lemma 1 Does Not Hold):

Lemma 1 provides a necessary condition for identification of
Koopman eigenfunctions in span(D). However, this condition
is not sufficient. In other words, not every eigenvector of
KEDMD corresponds to a Koopman eigenfunction. We refer
the reader to our previous work [82, Theorems 4.3 &
4.6] for necessary and (almost surely) sufficient conditions
to identify Koopman eigenfunction by applying EDMD
forward and backward in time and comparing their solutions’
eigendecompositions. □

Next, we show another important property of EDMD
regarding the prediction of the Koopman operator’s action on
the span of the dictionary.
Proposition 1 (The EDMD’s Koopman Predictor (9) is

Invariant Under Choice of Basis for the Subspace): Let
D1 and D2 be two dictionaries such that span(D1) =
span(D2) and let Assumption 1 hold for both of them. Given
data matrices X, Y , define the EDMD solutions as

K1 = EDMD(D1,X ,Y ), K2 = EDMD(D2,X ,Y ).

Given f ∈ span(D1) = span(D2) with representations f (·) =
D1(·)v1 = D2(·)v2 for some v1, v2 ∈ CNd , define the EDMD
Koopman predictors using K1 and K2 according to (9) as

PKf ,1(·) = D1(·)K1v1, PKf ,2(·) = D2(·)K2v2.

Then, PKf ,1(·) = PKf ,2(·). □
The proof is provided in theAppendix. Proposition 1 shows

that the dynamical information captured by EDMD only
depends on the span of the dictionary and not the particular

basis/dictionary. Interestingly, Proposition 1 does not require
for the dictionary’s span to be Koopman-invariant.
We conclude this section by noting that the quality of

the predictor (9) depends on the quality of the vector space
span(D). The closer span(D) is to being invariant under the
Koopman operator, the more accurately (9) predicts the effect
of the Koopman operator. In the extreme case when span(D)
is Koopman-invariant, then the predictor (9) is exact for
all functions in span(D). Therefore, to find an appropriate
subspace (and consequently dictionary) for EDMD, we need
to quantify how close a vector space is to being invariant
under the Koopman operator.

C. MEASURING KOOPMAN-INVARIANCE PROXIMITY
USING THE CONSISTENCY INDEX
Here, we recall the concept of temporal forward-backward
consistency following [94]. The first step to find/approximate
Koopman-invariant subspaces is to measure how close a
subspace is to being Koopman invariant (we refer to this
as invariance proximity). Since invariance proximity is a
property of the vector space (not a particular basis), we need
to find a measure that is invariant with respect to the choice
of basis for the subspace.2

We start by noting that, if span(D) is Koopman-invariant,
under Assumption 1, the solutions of EDMD applied forward
in time and backward in time are inverse of each other. This
justifies the following definition. For convenience, we define
the forward and backward EDMD matrices as follows

KF = EDMD(D,X ,Y ) = D(X )†D(Y ),

KB = EDMD(D,Y ,X ) = D(Y )†D(X ).

Definition 1 (Consistency Matrix and Index [94, Defini-
tion 1]): Given dictionary D and data matrices X and Y ,
the consistency matrix is MC (D,X ,Y ) = I − KFKB and the
consistency index is IC (D,X ,Y ) = sprad

(
MC (D,X ,Y )

)
.□

We drop the arguments and use MC and IC when
the context is clear. The consistency index measures the
deviation of KF and KB from being the inverse of each other.
Interestingly, the spectrum of MC and consequently IC only
depend on span(D) and not the choice of basis/dictionary
itself.
Proposition 2 (Consistency Matrix’s Spectrum is Invari-

ant under Linear Transformation of Dictionary [94, Propo-
sition 1]): Let D1 and D2 be two dictionaries such that
span(D1) = span(D2) and let Assumption 1 hold for them.
Then spec

(
MC (D1,X ,Y )

)
= spec

(
MC (D2,X ,Y )

)
. □

We also recall the following properties of the consistency
matrix that we use throughout the paper.

2The residual error of EDMD, ∥D(Y )− D(X )KEDMD∥F , depends on the
choice of basis and is not suitable for measuring the invariance proximity.
In fact, it is easy to show that if span(D) is far from invariant but contains
one exact eigenfunction, then one can find a linear transformation on the
dictionary to make the residual error arbitrarily close to zero. We refer the
reader to [94, Example 1] for an example.
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Lemma 2 (ConsistencyMatrix’s Properties [94, Lemma 1]):
Given Assumption 1, the consistency matrix MC (D,X ,Y ) has
the following properties:
(a) it is similar to a symmetric matrix;
(b) it is diagonalizable with a complete set of eigenvectors;
(c) spec

(
MC (D,X ,Y )

)
⊂ [0, 1]. □

An important consequence of Lemma 2 is that IC (D,X ,Y )
= λmax(MC (D,X ,Y )). Also, under an appropriate similarity
transformation, one can see IC as the induced 2-norm of a
positive semidefinite matrix.

The next result shows that the square root of consistency
index provides a tight upper bound on the maximum relative
root mean square error (RRMSE), which corresponds to the
relative L2-norm error under the empirical measure of all
functions in the span(D).
Theorem 1 (

√
IC Bounds RRMSE for EDMD’s Koopman

Predictions [94, Theorem 1]): Given Assumption 1 for
dictionary D and data matrices X ,Y , define the empirical
measure based on data in X as µX =

1
N

∑N
i=1 δxi , where δxi

is the Dirac measure defined based on the ith row of X . Then

RRMSEmax := max
f ∈span(D)

√
1
N

∑N
i=1 |Kf (xi)−PKf (xi)|2√
1
N

∑N
i=1 |Kf (xi)|2

= max
f ∈span(D)

∥Kf −PKf ∥L2(µX )
∥Kf ∥L2(µX )

=

√
IC (D,X ,Y ),

where xi is the ith row of X and PKf is defined in (9). □
Theorem 1 provides a crucial tool for the approximation of

Koopman-invariant subspaces. It provides a tight bound on
the prediction accuracy of all (uncountably many) functions
in span(D), with a simple closed-form expression to evaluate
it. Its derivation through the consistency matrix provides
insight into the algebraic structure of the vector space and
its connection with the Koopman operator. Beyond the space
L2(µX ), we refer the interested reader to [39, Definition 8.5]
and [96] for the definition of invariance proximity on general
inner-product spaces and its computation using Jordan
principal angles.
Remark 3 (Relationship between Invariance Proximity

and Eigenspace Residuals): At first glance, one might think
that the ratio in the relative error presented in Theorem 1
is a generalization of subspace residuals, see e.g, [88,
Equations (3.1) and (3.4)] (also see [85], [86], [87]), to multi-
dimensional spaces. However, this is not the case since
the denominator of the expressions are different. Invariance
proximity and residuals have different roles: the former
measures the relative function prediction error of arbitrary
functions (not necessarily eigenfunctions) under projected
Koopman approximations, while the latter measures the
quality of a candidate eigenpair (not arbitrary functions on
a vector space). If the Koopman operator is bounded, invari-
ance proximity also bounds the residuals of all candidate
eigenpairs derived by orthogonal projection, including the
special case of the EDMD method (cf. [96, Lemma 2.3]).

We refer the reader to [96, Section 2.5] for a detailed
discussion of this matter over general inner-product spaces.
□

III. MOTIVATING CHALLENGES AND PROBLEM
STATEMENT
Our general goal is to develop methods to identify and
approximate Koopman-invariant subspaces. We discuss here
the challenges that we face in doing so and formally introduce
the problem statement. To make our presentation clearer,
we use the following system as a running example.
Example 1 (Van der Pol Oscillator): Consider the Van der

Pol oscillator

ẋ1 = x2,

ẋ2 = (1− x21 ) x2 − x1, (10)

with state spaceM ⊆ R2. This system is a classical example
of a nonlinear oscillator with an stable periodic orbit (limit
cycle). Figure 1 shows the vector field and the limit cycle of
the Van der Pol oscillator.

FIGURE 1. Vector field of Van der Pol oscillator (10) and its limit cycle.

We investigate the dependency of EDMD on the choice
of dictionary to motivate the importance of developing solid
criteria to judiciously choose the library of functions.
Data: We consider a discretization of system (10) with time

step 1t = 2.5 × 10−2s. We sample 5000 trajectories with
initial conditions uniformly taken from [−4, 4]2. The length
of each trajectory is one second and is sampled according to
time step1t leading to N = 2×105 data snapshots allocated
in matrices X, Y , cf. (6).
Dictionaries: We use two dictionaries Dpol and Dtailored.

Dpol is comprised of all 45 monomials up to degree 8, while
Dtailored is comprised of 5 polynomials up to degree 8 tailored
to the system.3 Note that span(Dpol) is the vector space of all
polynomials with complex coefficients up to degree 8 and that
span(Dtailored) ⊊ span(Dpol).

3We later discuss how to find such tailored dictionaries. Our aim in this
section is to show the importance of tailoring dictionaries compared to
generic formulations.
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FIGURE 2. EDMD’s residual error (left) and its normalized version (right)
for α ∈ [10−8, 1].

A. CHALLENGES
Here, we briefly discuss the challenges that we aim to
address.

1) A VECTOR SPACE IS NOT JUST A BASIS
The main difficulty to approximate Koopman-invariant sub-
spaces is that one needs to characterize the approximation’s
quality for the entire vector spacewhich contains uncountably
many functions. Generally, trying to quantify the EDMD’s
prediction accuracy by measuring the prediction accuracy of
finitely many functions (e.g., the elements of a basis) is not
sufficient and can lead to erroneous conclusions.

For instance, given Example 1, consider the parametrized
dictionary Dα constructed in the following way: given
the dictionary Dpol, each non-constant monomial xk11 x

k2
2 is

replaced by 1 + αxk11 x
k2
2 , where α ∈ R \ {0} is a parameter.

Note that span(Dα) = span(Dpol) for all nonzero values of
α, i.e., Dα’s for α ∈ R \ {0} form different bases for the
space of all polynomials up to degree 8. Now, consider the
residual error4 of EDMD (frequently used as cost function
for dictionary learning) and its normalized version

E(α) = ∥Dα(Y )− Dα(X )Kα∥F , Er (α) =
E(α)

∥Dα(Y )∥F
,

whereKα = EDMD(Dα,X ,Y ). Figure 2 shows these notions
of error with different values of α. Clearly, both errors depend
on the choice of basis and do not capture the quality of
the vector space. This is despite the fact that the EDMD’s
Koopman predictor (9) is solely a property of the vector space
and is independent of the basis (cf. Proposition 1).
To tackle the aforementioned issues regarding the depen-

dencies on the basis, we use the consistency index, cf.
Definition 1, as our invariance-proximity measure which
quantifies the worst-case RRMSE of functions on the vector
space. Figure 3 shows the RRMSEmax,α =

√
IC (Dα,X ,Y )

(cf. Theorem 1) for different values of α. It is clear that the
consistency index is a property of data and the vector space
span(Dα) and does not depend on the choice of basis.

Throughout the paper, we use the consistency index as our
Koopman-invariance proximity measure and make sure that
other computations are also basis-independent, capturing the
same information in all bases representations.

4Even though this measure is called residual error, it is different from the
error used in the residual dynamic mode decomposition in [88].

FIGURE 3. The worst-case RRMSE prediction error for all (uncountably
many) functions in the vector space span(Dα) for α ∈ [10−8, 1].

FIGURE 4. Absolute value (left) and phase (right) of the approximated
eigenfunction with eigenvalue λ = 0.9992 + 0.0239j identified by EDMD
applied on Dpol.

2) A LARGER DICTIONARY MAY BE LESS ACCURATE
Applying EDMD on an m-dimensional space always leads to
m identified eigenfunctions (or generalized eigenfunctions)
whether the space contains m actual eigenfunctions or
not. This leads to spurious eigenfunctions which should
be removed from the set of identified eigenfunctions, see
e.g., [88]. Although removing spurious eigenfunctions is
an important step regarding the Koopman-based subspace
identification, here, we also mention a more subtle problem
regarding the inapplicability of Lemma 1 to approximate
eigenfunctions.

Our aim is to show that simply having a richer subspace
by adding functions to the dictionary does not necessarily
improve the results. In fact, it can deteriorate the quality
of the approximation. Consider Example 1 and note that
span(Dtailored) ⊊ span(Dpol). By applying EDMD on
Dpol we find a (complex conjugate) pair of approximate
eigenfunctions capturing the periodic behavior of trajectories.
Figure 4 shows one of them. Similarly, if we apply EDMD on
span(Dtailored) we find a pair of approximate eigenfunctions
capturing similar information as Figure 4. Figure 5 shows one
eigenfunction of the pair (the other is its complex conjugate).5

Both approximate eigenfunctions in Figure 4-5 capture
similar information about the periodic behavior of trajecto-
ries. However, the accuracy level is different as depicted in
Figure 6. Clearly, the quality of approximation for dictionary
Dtailored is better than Dpol.

5Both functions in Figures 4-5 are normalized to have maximum absolute
value equal to one over the depicted domain.
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FIGURE 5. Absolute value (left) and phase (right) of the approximated
eigenfunction with eigenvalue λ = 0.9887 − 0.0083j identified by EDMD
applied on Dtailored.

FIGURE 6. The prediction error |Kϕ(x) − λϕ(x) | over the domain
[−3, 3]2 for approximated eigenfunctions in Fig. 4 (left) and Fig. 5 (right).
Note that both eigenfunctions are normalized to have maximum absolute
value equal to one over the represented domain.

Remark 4 (Lemma 1 Does not Apply to Approximations):
Even though EDMD can capture exact eigenfunctions in
the span of any dictionary, cf. Lemma 1, this does not
necessarily hold for approximations. In other words, if span
of the dictionary contains a highly accurate approximate
eigenfunction, it might not correspond to an eigenvector of
EDMD matrix. Note that the function in Figure 5 also exists
in span(Dpol) but is not captured as an eigenfunction if we
apply EDMD on Dpol. The reason for this discrepancy is
that span(Dpol) is far from Koopman-invariant and contains
functions with highly inaccurate Koopman predictions whose
inaccurate prediction leaks into other functions. □
Remark 5 (Consistency with the Asymptotic Convergence

Results of [73]): Our discussion in this section does not
contradict the results regarding the convergence of EDMD
in [73]. This is because the latter are of asymptotic nature,
considering the case when the subspace’s dimension goes
to infinity, and do not claim that the prediction error for
all functions in the subspace decreases monotonically. This
highlights the need for methods identifying subspaces that
satisfy desirable levels of accuracy. □

3) ALGEBRAIC SEARCH VERSUS OPTIMIZATION
Many methods in the literature rely on optimization-based
methods to find Koopman-invariant subspaces. Even though
optimization methods are highly practical and accessible,
they are also a form of abstraction on the problem.
Specifically, by formulating the Koopman-invariant subspace

identification as an optimization problem, one often does
not use the linear algebraic structure of the Koopman
operator and its eigenfunctions (both spatial and temporal)
in the learning process (solving the optimization problem).
We view this as a missed opportunity. Especially since
the aforementioned optimization problems are generally
non-convex and therefore difficult to solve. Hence, we argue
that one shall use the algebraic structure of the Koopman
operator, not only for modeling and prediction, but also for
the learning process itself.

Similarly to optimization-based learning methods that
effectively search through a parametric family of functions
(e.g., neural-network, polynomial interpolation, etc.), the
methods proposed here also search through a family of
functions. However, our search space has an algebraic
property of being a vector space. This allows us to use
the Koopman operator’s linearity to design fast and reliable
algebraic algorithms leading to convergence and accuracy
guarantees on all (uncountably many) functions in the
identified vector space.

B. PROBLEM STATEMENT
We are ready to formally pose our problem aimed at
addressing the aforementioned challenges. Consider the data
snapshot matrices X ,Y ∈ RN×n from the (unknown)
system (1) (cf. Section II-B). Moreover, consider a finite-
dimensional search space of functions S specified by a
basis/dictionary D such that S = span(D) for which
Assumption 1 holds. We aim to search through S for a
subspace on which the EDMD prediction for all functions
reaches a desired accuracy level. We formalize this problem
as follows:
Problem 1 (Search for Approximate Koopman-Invariant

Subspaces): Given the subspace S = span(D) and data
matrices X ,Y , and any accuracy parameter ϵ ∈ [0, 1],
we aim to design an iterative algorithm that utilizes
the algebraic structure of the Koopman operator and its
eigenfunctions (pertaining to linearity in space and temporal
evolution) to search through S and identify the subspace
Lϵ ⊆ S such that

(a)
∥Kf−PKf ∥L2(µX )

∥Kf ∥L2(µX )
≤ ϵ for all f ∈ Lϵ , with ∥Kf ∥L2(µX ) ̸=

06;
(b) for all ϵ ∈ [0, 1],Lϵ always contains all exact Koopman

eigenfunctions in S. □

Part (a) in Problem 1 ensures that the prediction accuracy
of all (uncountably many) functions in the identified space
satisfies the bound specified by parameter ϵ while Part
(b) ensures that the algorithm retains all the functions with
exact prediction.

6A function f with ∥Kf ∥L2(µX ) = 0 satisfies ∥Kf −PKf ∥L2(µX ) = 0;
therefore, there is no prediction error in this case.
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IV. RECURSIVE FORWARD-BACKWARD EDMD
ALGORITHM
Here we introduce an algebraic search algorithm based on
the use of EDMD forward and backward in time to solve
Problem 1. Based on Theorem 1, one can use the consistency
index to reformulate Problem 1(a) as finding a space Lϵ ⊆ S
such that

IC (Dϵ,X ,Y ) ≤ ϵ2, (11)

where Dϵ is an arbitrary basis for Lϵ .
Algorithm 1 presents the Recursive Forward-Backward

EDMD (RFB-EDMD) method.7

Algorithm 1 Recursive Forward-Backward EDMD

Inputs: D(X ),D(Y ) ∈ RN×Nd , ϵ ∈ [0, 1]
Output: CFB

∈ RNd×No ▷ : No is the dimension of the
identified space

1: Procedure RFB-EDMD(D(X ),D(Y ), ϵ)
2: Initialization
3: i← 0, A0← D(X ), B0← D(Y ), C0← INd , V0← INd
4: while 1 do
5: i← i+ 1
6: KF,i← A†i−1Bi−1 ▷ Forward EDMD

7: KB,i← B†i−1Ai−1 ▷ Backward EDMD
8: MC,i← I−KF,iKB,i ▷ Consistency Matrix
9: λmax,i = max{λ | MC,iv = λv, v ̸= 0}
10: if λmax,i ≤ ϵ2 then
11: return Ci← Ci−1 ▷ The procedure is complete
12: break
13: end if
14: Si← span{v|MC,iv = λv, v ̸= 0, λ < λmax,i}

▷ Removing eigenvectors with maximum
eigenvalue

15: if Si = ∅ then
16: return Ci← 0Nd×1 ▷ The space does not exist
17: break
18: end if
19: Vi← basis(Si)
20: Ci← Ci−1Vi ▷ Reduce the subspace
21: Ai← Ai−1Vi, Bi← Bi−1Vi

▷ Calculating the new dictionary matrices
22: end while

In what follows, we provide a high-level description of the
algorithm and then formally characterize its basic properties.

A. INFORMAL DESCRIPTION OF RFB-EDMD
We start by exploring the entire search space S = span(D).
Given that our goal is to find a subspace for which (11) holds,
we first compute the consistency matrix for the original space
as MC = I − KFKB. There are two possible scenarios:
(a) IC = λmax(MC ) ≤ ϵ2: in this case, the search space S

satisfies (11) and the algorithm terminates;

7In Algorithm 1, the function basis(S) returns a matrix whose columns
provide an orthonormal basis for the vector space S.

(b) IC = λmax(MC ) > ϵ2: in this case, we decompose the
search space S as

S = S<λmax + S=λmax , (12)

where

S<λmax = span
(
{D(·)v | v ∈ V<λmax}

)
,

S=λmax = span
(
{D(·)v | v ∈ V=λmax}

)
,

and the sets V<λmax and V=λmax are the parts of the
eigenspace ofMC corresponding to eigenvalues smaller
than λmax and equal to λmax, respectively,8

V<λmax = {v | MCv = λv, v ̸= 0, λ < λmax},

V=λmax = {v | MCv = λv, v ̸= 0, λ = λmax}.

Given that the functions in S=λmax correspond to the
maximum eigenvalue of MC leading to the violation
of (11), we remove them from the space and replace
S by S<λmax . Note that there is no direct guarantee for
the pruned space S<λmax to satisfy (11) since all the
calculations of consistency index were done based on
the original space S. To tackle this, we recursively prune
the subspace by applying the procedure above until the
algorithm terminates by Scenario (a).

Noting the fact that one can numerically characterize
functions in S by vectors inCdim(S) through the bijective map
f (·) = D(·)v ↔ v, we design the RFB-EDMD algorithm
on the space of coefficients for computational efficiency
(avoiding the complexity of having to deal directly with
functions on digital computers). Moreover, given that the
system is real-valued and all Koopman eigenfunctions come
in complex-conjugate pairs, we restrict the computational
operations in Algorithm 1 to real-valued vectors without loss
of generality.9

After running the algorithm, letCFB
ϵ be the matrix returned

by the RFB-EDMD algorithm

CFB
ϵ := RFB-EDMD(D(X ),D(Y ), ϵ). (13)

We can characterize the identified space of functions through
its basis by

Dϵ(·) := D(·)CFB
ϵ . (14)

Moreover, similarly to (9), we provide a predictor for Kf
based on the application of EDMD on Dϵ . Formally, given
any arbitrary function f ∈ span(Dϵ) with description f (·) =
Dϵ(·)v with v ∈ C♯cols(CFB), we define the EDMD predictor
for Kf as

PKf ,ϵ = Dϵ(·)KEDMD,ϵ v, (15)

where KEDMD,ϵ := EDMD(Dϵ,X ,Y ) = Dϵ(X )†Dϵ(Y ).

8Note that the eigenvalues of MC are real based on Lemma 2(c).
9Note that the algorithm still captures all complex-valued objects since

the vector spaces are defined over C. For example, all the complex
eigenfunctions can be identified by applying EDMD on the identified space
and performing an eigendecomposition (which can lead to complex vectors)
on the resulting matrix.
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Remark 6: (Implementations on Finite PrecisionMachines):
Although the eigenvalues and eigenvectors of the consistency
matrix are real valued (cf. Lemma 2), most iterative
algorithms for eigendecomposition lead to complex-valued
results in which the imaginary part is negligible (at the level
of machine precision). Therefore, we discard the imaginary
parts in Step 9 and Step 14 of Algorithm 1.Moreover, to avoid
the build-up of round-off errors, we make a change of basis
on the dictionary D such that the columns of the matrix D(X )
with the new dictionary are orthonormal – the algorithm is not
sensitive to change of basis for the search space as a result of
Proposition 1. □

B. BASIC PROPERTIES OF RFB-EDMD
We formally study basic properties of RFB-EDMD
algorithm.We first show that the algorithm always terminates
in finite iterations and provide an upper bound on its number.
Proposition 3 (Finite-Time Termination of RFB-EDMD):

Under Assumption 1, Algorithm 1 terminates in at most Nd
iterations, where Nd is the dimension of the search space
(equivalently, the dimension of the original dictionary).

Proof: We reason by contradiction. Suppose that
Algorithm 1 does not terminate in the first Nd iterations. As a
result, it does not execute Step 12 or Step 17 in the first
Nd iterations. Consequently, the conditions in Step 10 and
Step 15 do not hold and we have λmax,i > ϵ2 and Si ̸= ∅ for
all i ∈ {1, . . . ,Nd }. Moreover, the algorithm executes Step 14
and Steps 19-21 in the first Nd iterations.
Based on Step 14, we have dim(Si) < ♯cols(MC,i). Hence,

using the definition of MC,i, KF,i, KB,i, Ai, Bi, Ci, and Vi in
Steps 6-8 and Steps 19-21, for all i ∈ {1, . . . ,Nd }, one can
write

dim(Si) < ♯cols(Ai−1) = ♯cols(Ci−1) = ♯cols(Vi−1). (16)

Using the previous equation in conjunction with the fact that
♯cols(Vj) = dim(Sj) for all j ∈ N (cf. Step 19), we have

dim(Si+1) ≤ dim(Si)− 1, ∀i ∈ {1, . . . ,Nd }.

Moreover, using the previous inequality Nd times, in con-
junction with equation (16) for i = 1, and noting that
♯cols(V0) = Nd , one can deduce that

dim(SNd ) < 1.

Hence, SNd = ∅ (note that the case SNd = {0} cannot happen
since the eigenvectors are always non-zero) and the condition
in Step 15 holds, which contradicts the hypothesis that the
algorithm does not terminate by executing Step 17 in the first
Nd iterations.
The next result provides the basic properties of

RFB-EDMD’s internal matrices, which we will use
frequently in our analysis.
Theorem 2 (Properties of RFB-EDMD’s Internal Matri-

ces): Let Algorithm 1 terminate after L iterations. Then,
under Assumption 1, for any arbitrary ϵ ∈ [0, 1],
(a) CT

i Ci = I for all i ∈ {0, . . . ,L − 1};

(b) CL = 0Nd×1 or C
T
L CL = I ;

(c) R(Ci) ⊆ R(Ci−1) for all i ∈ {1, . . . ,L};
(d) Ai = D(X )Ci, Bi = D(Y )Ci for all i ∈ {0, . . . ,L − 1};
(e) Ai and Bi have full column rank for all i ∈ {0, . . . ,L−1}.

Proof: (a) The case for i = 0 trivially holds (cf. Step 3).
Since the algorithm terminates at iteration L, it does not
execute Steps 17 in the first L − 1 iterations. As a result, the
condition in Step 15 does not hold in the first L− 1 iterations
and Si ̸= ∅, ∀i ∈ {1, . . . ,L − 1}. Consequently, based on
Step 19,Vi is well defined and using the definition of the basis
function,

V T
i Vi = I , ∀i ∈ {1, . . . ,L − 1}. (17)

Moreover, noting the iterative definition of Ci at Step 20 and
using the fact that C0 = INd , one can write

Ci = V1V2 . . .Vi, ∀i ∈ {1, . . . ,L − 1}. (18)

Equations (17)-(18) imply that CT
i Ci = I , for all i ∈

{1, . . . ,L − 1}.
(b) Since the algorithm terminates at iteration L, it either

executes Steps 11-12 or Steps 16-17 in the last iteration. In the
former case,CL = CL−1, cf. Step 11, andCT

L CL = I based on
part (a). In the latter case, CL = 0Nd×1 trivially holds based
on Step 16.

(c) We first prove the result for i ∈ {1, . . . ,L − 1}. The
algorithm executes Step 20 in the first L−1 iterations since it
does not terminate until iteration L. Hence, Ci = Ci−1Vi and
consequentlyR(Ci) ⊆ R(Ci−1) for all i ∈ {1, . . . ,L − 1}.
Next, we prove the identity for i = L. Since the algorithm

terminates at iteration L, it either executes Steps 11-12
leading to R(CL) = R(CL−1) or it executes Steps 16-17
leading to CL = 0Nd×1. In both cases, the identity R(CL) ⊆
R(CL−1) holds.
(d) The result holds trivially for i = 0 based on Step 3.

Hence, we focus on the cases where i ̸= 0. Based on the
iterative definition of Ai and Bi at Step 21, one can write

Ai = A0V1V2 . . .Vi,

Bi = B0V1V2 . . .Vi,

for all i ∈ {1, . . . ,L − 1}. This, in conjunction with (18) and
the fact that A0 = D(X ),B0 = D(Y ) (cf. Step 3), implies that
Ai = D(X )Ci and Bi = D(Y )Ci for all i ∈ {1, . . . ,L − 1}.
(e) Using part (d), the statement directly follows from

Assumption 1 and the fact that Ci’s have full column rank
for all i ∈ {0, . . . ,L − 1} (cf. part (a)).
Remark 7 (Time Complexity of RFB-EDMD Algorithm):

Considering that the time complexity of basic scalar opera-
tions are of order O(1), and assuming the generic case where
N ≫ Nd , the most time consuming steps in Algorithm 1
are Steps 6-7, which can be solved using truncated Singular
Value Decomposition with complexity O(N N 2

d ) (cf. [97]).
Since the algorithm terminates after at most Nd iterations
(cf. Proposition 3), this yields the total time complexity
of O(N N 3

d ), which means the algorithm is efficient given
the linear complexity in size of data N and the fact that,

VOLUME 13, 2025 61015



M. Haseli, J. Cortés: Recursive Forward-Backward EDMD: Guaranteed Algebraic Search

in practice, we usually have N ≫ Nd . It is also worth
mentioning that the complexity could be further reduced by
using fast linear algebraic methods [98]. □

V. RFB-EDMD IDENTIFIES KOOPMAN EIGENFUNCTIONS
AND APPROXIMATE INVARIANT SUBSPACES
Here we show that the RFB-EDMD algorithm solves Prob-
lem 1. The next result shows that the identified subspace by
RFB-EDMD satisfies (11); therefore, solving Problem 1(a).
Theorem 3 (RFB-EDMD Bounds the Invariance Proxim-

ity and Koopman Prediction Error): Given the RFB-EDMD
output CFB

ϵ ̸= 0 and dictionary Dϵ defined in (13)-(14) with
parameter ϵ ∈ [0, 1], define the Forward and Backward
EDMD matrices on the RFB-EDMD subspace as

K̃F = EDMD(Dϵ,X ,Y ) = Dϵ(X )†Dϵ(Y ),

K̃B = EDMD(Dϵ,Y ,X ) = Dϵ(Y )†Dϵ(X ).

Let MC = I − K̃F K̃B be the associated consistency matrix
andPKf ,ϵ the EDMD predictor forKf defined in (15). Then,
IC = λmax(MC ) ≤ ϵ2. Consequently,

∥Kf −PKf ,ϵ∥L2(µX )
∥Kf ∥L2(µX )

≤ ϵ,

for all f ∈ Lϵ = span(Dϵ) with ∥Kf ∥L2(µX ) ̸= 0.
Proof: By Proposition 3, the algorithm terminates after

a finite number of iterations, say L. There are two ways in
which this can happen: either from Steps 11-12 or Steps 16-
17. Since CFB

ϵ = CL ̸= 0 by hypothesis, we deduce
that the algorithm executes Steps 11-12 upon termination at
iteration L. As a result, the condition in Step 10 holds at
iteration L and we have λmax,L ≤ ϵ2. Hence, based on the
definition of λmax,L , one can write

λmax(MC,L) = λmax(I − KF,LKB,L) ≤ ϵ2, (19)

where KF,L , KB,L , and MC,L are the internal matrices of
Algorithm 1 at iteration L defined in Steps 6-8. Noting that
by definition CFB

ϵ = CL and based on Step 11 at iteration
L, we have CL = CL−1 leading to the conclusion that
CFB

ϵ = CL−1. In addition, one can use Theorem 2(d) and
the definition ofDϵ in (14) to deduce that AL−1 = Dϵ(X ) and
BL−1 = Dϵ(Y ). Consequently,

K̃F = KF,L , K̃B = KB,L , MC = MC,L .

Hence, based on the previous equations and (19), we deduce
IC = λmax(MC ) ≤ ϵ2. The rest of the statement then follows
directly from Theorem 1.

The next result shows that at each iteration RFB-EDMD
retains all Koopman eigenfunctions in the search space,
paving the way for solving Problem 1(b).
Theorem 4 (RFB-EDMD Internally Retains all Koopman

Eigenfunctions in Search Space): Let φ be a Koopman
eigenfunction with eigenvalue λ ∈ C \ {0} contained
in the span of the original dictionary, i.e., φ ∈ S =
span(D), denoted as φ(·) = D(·)v with v ∈ CNd \ {0}.
Under Assumption 1, let L be the termination iteration of

Algorithm 1 with ϵ ∈ [0, 1]. Then for all i ∈ {0, . . . ,L},
there exists a complex vector wi with appropriate size such
that v = Ciwi, where Ci is the internal matrix of Algorithm 1
at iteration i.

Proof: We prove the result by induction. For i = 0,
C0 = INd , cf. Step 3, and w0 = v trivially satisfies the
sought property. Now, suppose that the result holds for i ∈
{0, . . . ,L − 1}, i.e., there exist wi such that v = Ciwi for
i ∈ {0, . . . ,L − 1}, and we prove the same for i + 1. If the
algorithm at iteration i + 1 executes Step 11, then we have
wi+1 = wi and the sought property holds based on the
hypothesis of the induction (note that this only happens at the
last iteration i + 1 = L following from Steps 11-12). Now,
let us consider the case where the algorithm does not execute
Step 11 at iteration i+1. In this case, the condition in Step 10
does not hold and we have

λmax,i > ϵ2 ≥ 0. (20)

By definition of the Koopman eigenfunctions, we have

Kφ(x) = φ ◦ T (x) = λφ(x), ∀x ∈M.

This identity combined with the property of data mentioned
in (6) and the fact that φ(·) = D(·)v leads to

D(Y )v = λD(X )v.

Moreover, based on the hypothesis of the induction, we have
v = Ciwi. Therefore,

D(Y )Ciwi = λD(X )Ciwi.

This together with Theorem 2(d) and the fact that λ ̸= 0 leads
to

Biwi = λAiwi,

Aiwi = λ−1Biwi. (21)

As a result,

KF,i+1KB,i+1wi = A†i BiB
†
i Aiwi = λ−1A†i BiB

†
i Biwi

= λ−1A†i Biwi = A†i Aiwi,

where we have used (21), Steps 6-7 of the algorithm and the
fact thatBiB

†
i Bi = Bi. Using this equation and Step 8, we have

MC,i+1wi = (I − A†i Ai)wi = 0,

where the last equality holds since A†i Ai = I based on
Theorem 2(e). Hence, wi is an eigenvector of MC,i+1 with
eigenvalue 0. Therefore, based on (20) and Step 14, we have
wi ∈ Si+1. Consequently, based on Step 19, there exists a
vector, which we refer to as wi+1, such that wi = Vi+1wi+1.
This identity in conjunction with the definition of wi as
v = Ciwi and Step 20 implies

v = Ciwi = CiVi+1wi+1 = Ci+1wi+1,

leading to v ∈ R(Ci+1), concluding the proof.
Theorem 4 shows that RFB-EDMD iteratively prunes

the search space in a way that does not remove critical
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information containing exact eigenfunctions.We build on this
result to demonstrate that RFB-EDMD solves Problem 1(b).
Theorem 5 (RFB-EDMDRetains all Koopman Eigenfunc-

tions in Search Space): Let φ ∈ S = span(D) be a Koopman
eigenfunction with eigenvalue λ ∈ C \ {0} contained in
the span of the original dictionary. Under Assumption 1,
for ϵ ∈ [0, 1], let Dϵ be the dictionary identified by the
RFB-EDMD algorithm in (14). Then φ ∈ span(Dϵ) = Lϵ .

Proof: By hypothesis, φ(·) = D(·)v with v ∈ CNd \

{0}. Let L be the termination iteration of Algorithm 1. By
Theorem 4, v ∈ R(Ci) for all i ∈ {0, . . . ,L}. Hence,
Ci ̸= 0 for all i ∈ {0, . . . ,L}. As a result, the algorithm
at iteration L terminates by executing Steps 11-12 (and
not Steps 16-17). Hence, by Theorem 4 and equation (13),
we have v ∈ R(CFB

ϵ ) = R(CL). Therefore, from (14),
we conclude φ ∈ span(Dϵ).

VI. ACCURACY HIERARCHY ON SUBSPACES
Here, we show that the solution of RFB-EDMD with respect
to the parameter ϵ ∈ [0, 1] creates a hierarchy of nested
subspaces with different values of invariance proximity. Our
first step towards establishing this result is to show the
subspaces identified by RFB-EDMD are monotone with
respect to the parameter ϵ.
Theorem 6 (Monotonicity of Identified Subspaces by RFB-

EDMD with Respect to ϵ): Let 0 ≤ ϵ1 ≤ ϵ2 ≤ 1 and

CFB
ϵ1
= RFB-EDMD(D(X ),D(Y ), ϵ1),

CFB
ϵ2
= RFB-EDMD(D(X ),D(Y ), ϵ2).

Then, R(CFB
ϵ1

) ⊆ R(CFB
ϵ2

) and span(Dϵ1 ) ⊆ span(Dϵ2 ),
where Dϵ1 (·) = D(·)CFB

ϵ1
and Dϵ2 (·) = D(·)CFB

ϵ2
are the

corresponding RFB-EDMD dictionaries, cf. (14).
Proof:We start the proof by noting that only Steps 10-12

of Algorithm 1 depend on the parameter ϵ. In fact, as long as
the condition in Step 10 does not hold, the parameter ϵ does
not play any role in the evolution of Algorithm 1.
Let Lϵ2 be the termination iteration of the algorithm

with parameter ϵ2 (cf. Proposition 3). Upon termina-
tion, the algorithm either executes Steps 16-17 (case (a))
or Steps 11-12 (case (b)). We consider these cases
below.

Case (a): Since the algorithmwith ϵ2 executes Steps 16-17
at iteration Lϵ2 , the condition in Step 10 never holds through
the evolution of the algorithm (otherwise, it would terminate
by executing Steps 11-12). Hence, λmax,i > ϵ22 for all
i ∈ {1, . . . ,Lϵ2}. As a result, λmax,i > ϵ21 for all i ∈
{1, . . . ,Lϵ2}, and the algorithms with parameters ϵ1 and
ϵ2 have identical evolution until the end (when they both
terminate by executing Step 17) and consequently, CFB

ϵ1
=

CFB
ϵ2
= 0. Moreover, span(Dϵ1 ) = span(Dϵ2 ) trivially

holds.
Case (b): Since the algorithm with ϵ2 terminates by

executing Steps 11-12, the condition in Step 10 holds at
iteration Lϵ2 and consequently, λmax,Lϵ2

≤ ϵ22 . We further

divide this case into two subcases (i) λmax,Lϵ2
≤ ϵ21 and (ii)

λmax,Lϵ2
> ϵ21 .

(i) λmax,Lϵ2
≤ ϵ21 : in this case the algorithm with ϵ1 also

terminates (by executing Steps 11-12) after Lϵ2 iterations with
identical output as the algorithm with ϵ2. Hence, R(CFB

ϵ1
) =

R(CFB
ϵ2

) and span(Dϵ1 ) = span(Dϵ2 ).
(ii) λmax,Lϵ2

> ϵ21 : this is the only case when the algorithms
with ϵ1 and ϵ2 diverge. At iteration Lϵ2 , the algorithm with
parameter ϵ1 will move on to Step 14 and further prune the
subspace. Then, the algorithm either terminates at iteration
Lϵ2 by executing Steps 16-17 leading to CFB

ϵ1
= 0, which

satisfies the result trivially, or the algorithm does not execute
Steps 16-17 at iteration Lϵ2 and moves on to iteration Lϵ2 +

1. In this case, Lϵ1 , the termination iteration of algorithm
with parameter ϵ1, satisfies Lϵ1 > Lϵ2 . Noting that in the
first Lϵ2 iterations, the algorithms with parameters ϵ1 and
ϵ2 have identical evolution (and identical internal matrices)
prior to the termination of the algorithm with ϵ2, we invoke
Theorem 2(c) to conclude that R(CFB

ϵ1
) ⊆ R(CFB

ϵ2
) and

consequently, span(Dϵ1 ) ⊆ span(Dϵ2 ).
Next, we study the behavior of RFB-EDMD with extreme

values of ϵ ∈ [0, 1], starting with ϵ = 1.
Lemma 3 (RFB-EDMD with ϵ = 1 Identifies the Search

Space): Let CFB
1 = FB-EDMD(D(X ),D(Y ), 1) and D1(·) =

D(·)CFB
1 . Then, CFB

1 = INd and D1 = D.
Proof: Based on Lemma 2(c) and the fact that ϵ = 1,

one can deduce that at the first iteration of the algorithm
the condition in Step 10 holds. Therefore, the algorithm
terminates by executing Steps 11-12 and consequently,
CFB
1 = C1 = C0 = INd .
Next, we show that the RFB-EDMD with ϵ = 0 finds a

subspace onwhich the data-driven prediction of the Koopman
operator’s action on all functions is exact.
Lemma 4 (RFB-EDMD with ϵ = 0 Leads to Sub-

space with Exact Prediction on Data): Let CFB
0 =

FB-EDMD(D(X ),D(Y ), 0) and D0(·) = D(·)CFB
0 . Then, for

all f ∈ span(D0) with ∥Kf ∥ ̸= 0, we have
∥Kf −PKf ,0∥L2(µX )
∥Kf ∥L2(µX )

= 0,

where PKf ,0 is the EDMD predictor with ϵ = 0 for Kf
defined in (15). □

The proof directly follows from Theorem 3.
Remark 8 (Finite-Precision Machines): To use Lemma 4

with finite-precision machines, one should set the value
of parameter ϵ to a positive number close to zero instead
of exactly equal to zero. To account for round-off errors
when the dimension of the search space is large (leading to
many iterations), we suggest setting ϵ to be a few orders of
magnitude larger than the computer’s precision. □
Theorem 6 and Lemmas 3-4 naturally lead to a hierarchy

of subspaces based on the choice of parameter ϵ ∈ [0, 1].
Remark 9 (Accuracy Hierarchy on Identified Subspaces):

Let Lϵ = span(Dϵ) ⊆ S be the identified subspace by
RFB-EDMD given parameter ϵ ∈ [0, 1]. Then, based on
Theorem 6 and Lemmas 3-4, we have L0 ⊆ Lϵ ⊆ L1 = S
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for all ϵ ∈ [0, 1]. It is crucial to note that there are only
finitely many (at most dim(S) + 1 = Nd + 1) distinct
subspaces in this hierarchy, all with different dimensions.
In other words, if L0 ̸= L1, there exist at most m distinct
values10 0 < ϵ∗1 < · · · < ϵ∗m < 1 with m < dim(S) = Nd
such that L0 ⊊ Lϵ∗1

⊊ · · · ⊊ Lϵ∗m
⊊ L1. Therefore, with

any value of ϵ ∈ [0, 1], RFB-EDMD algorithm identifies the
largest subspace from the aforementioned hierarchy whose
index (ϵ∗) is smaller than ϵ (cf. Figure 7). Note that based
on Theorem 5, L0 contains all Koopman eigenfunctions
contained in the original search space S. Moreover, based on
Lemma 4, all Koopman predictions on L0 are exact on the
data. □
Remark 10 (RFB-EDMD Versus Tunable Symmetric Sub-

space Decomposition (T-SSD) [84]): Both the RFB-EDMD
and T-SSD algorithms, cf. [84], are algebraic searches with
guarantees on accuracy and convergence. Moreover, RFB-
EDMD has the same order of time complexity as the
efficient version of T-SSD algorithm (cf. Remark 7 and [84,
Remark 8.2]). However, it has three major differences:
(i) while T-SSD relies on custom-made subroutines, RFB-
EDMD uses well-established linear algebraic routines, e.g.,
least-squares, eigendecomposition, etc., for which there exist
efficient and computationally robust methods in most soft-
ware packages. Moreover, all these ruotines have variations
that can directly be used on parallel processing hardware
such as GPUs and CPU clusters; (ii) RFB-EDMD has a less
aggressive pruning strategy that only cuts the dimension of
the subspace by removing the direction along the worst-case
errors (corresponding to the largest eigenvalue of the
consistency matrix), while T-SSD utilizes a more aggressive
pruning strategy that sometimes can over-prune, leading
to subspaces with smaller dimension but the same level
of accuracy compared to RFB-EDMD; (iii) the subspaces
identified by RFB-EDMD enjoy the accuracy hierarchy
pointed out in Remark 9 while the pruning in T-SSD can
break the monotonicity with respect to the value of ϵ, see [84,
Remark 6.7]. □

VII. SIMULATION RESULTS
We illustrate the correctness and effectiveness of the proposed
methods in four different examples. We start by a simple
example for which we can find the invariant subspaces
analytically to verify the theoretical properties of the RFB-
EDMD algorithm .11

A. DISCRETE-TIME NONLINEAR SYSTEM
Consider the two-dimensional nonlinear system defined by
the map

x+1 = 0.8 x1

x+2 =
√
0.9 x22 + x1 + 0.1, (22)

10Note that m can be zero, leading to the hierarchy L0 ⊊ L1.
11The codes for the examples are available at https://github.com/

mhaseli/RFB-EDMD-Codes

FIGURE 7. The accuracy hierarchy of subspaces contained in the search
space S. Given ϵ ∈ [0, 1], RFB-EDMD captures a member of the hierarchy
with the largest index smaller than ϵ. Note that L0 contains all exact
Koopman eigenfunctions contained in the original search space S
(cf. Theorem 5) and L1 equals to S (cf. Lemma 3).

where the state x = [x1, x2]T belongs to M = [0, 2]2.
To apply the RFB-EDMD algorithm, we uniformly sample
N = 1000 points from the state space M and push them
through the dynamics one step in time to form snapshot
matrices X ,Y ∈ RN×2. Moreover, we choose a dictionary
D spanning the space of all polynomials up to degree
two such that the columns of D(X ) are orthonormal (cf.
Remark 6). This can be done by starting from the dictionary
of monomials [1, x1, x2, x21 , x1x2, x

2
2 ], applying it on data in

X , then doing a linear transformation on columns to make
them mutually orthonormal.

As a first test for the RFB-EDMD algorithm, we apply it
on the dictionary and data for different values of ϵ ∈ [0, 1].
For comparison purposes, we also apply the efficient version
of the Tunable Symmetric Subspace Decomposition (T-SSD)
algorithm from [84] on the same dictionary, data, and values
of ϵ. Figure 8 shows the dimension of the identified subspaces
by RFB-EDMD, Lϵ = span(Dϵ) (where Dϵ is defined
in (14)), and the identified subspaces by the T-SSD algorithm
versus the value of the accuracy parameter ϵ. Figure 8 clearly
verifies the existence of the accuracy hierarchy on identified
subspaces by RFB-EDMD. It also verifies the claim in
Remark 10 that T-SSD has a more aggressive pruning. In this
example, the accuracy hierarchy identified by RFB-EDMD
contains only three nested subspaces with dimensions 6, 5,
and 4 respectively. In addition, for ϵ = 1 the algorithm
identifies the original six-dimensional search space, which
is in agreement with Lemma 3. It is also worth mentioning
that both RFB-EDMD and T-SSD algorithms have matching
behavior with extreme cases ϵ ≈ 0 and ϵ = 1; however,
their behavior is different witin the interval (0, 1) due to the
aggressive pruning of T-SSD.

Given ϵ ≈ 0, cf. Remark 8, the RFB-EDMD algorithm
identifies the 4-dimensional subspace span{1, x1, x21 , x

2
2 }.

The reader can easily verify the invariance of this space
under the Koopman operator.12 The identified 4-dimensional

12It is sufficient to check that the action of the Koopman operator on the
basis elements stays in the identified subspace.
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FIGURE 8. Dimension of identified subspaces by RFB-EDMD and T-SSD
versus the value of the accuracy parameter ϵ ∈ [0, 1] for system (22).

TABLE 1. Identified eigenfunctions and eigenvalues of the Koopman
operator associated with system (22).

subspace contains four Koopman eigenfunctions (up to
machine precision) as illustrated in Table 1. Note that
according to Theorem 5, the eigenfunctions in Table 1 are
all the correct eigenfunctions in the original search space.

Next, to illustrate the accuracy of Koopman-based pre-
diction on the state space, we consider the relative error of
function predictions on individual points in the state space as
follows

Eϵ
rel(x) =

∥KDϵ(x)−PKDϵ (x)∥2

∥KDϵ(x)∥2
× 100, x ∈M, (23)

where Dϵ(·) = [dϵ
1 (·), . . . , d

ϵ
dimLϵ

(·)] is the identified
dictionary by RFB-EDMD (cf. (14)). Moreover, KDϵ and
PKDϵ

are defined in an element-wise manner as

KDϵ = [Kdϵ
1 , . . . ,Kdϵ

dimLϵ
],

PKDϵ
= [PKdϵ

1
, . . . ,PKdϵ

dimLϵ
],

where we have used (15). Note that based on (15), one
can write PKDϵ

(·) = Dϵ(·)KEDMD,ϵ , where KEDMD,ϵ :=

EDMD(Dϵ,X ,Y ) = Dϵ(X )†Dϵ(Y ). Figure 9 shows the
relative error in (23) over the domain [0, 2]2 for ϵ ≈

0 and ϵ = 1. It is evident that the error for ϵ ≈

0 is equal to zero on the entire state space since the
identified subspace is invariant under the Koopman operator.
On the other hand, the error for the case with ϵ = 1
(which is equivalent to applying EDMD on the search space
according to Lemma 3) reaches 25% on some portions of
the state space. It is worth mentioning that the evaluations
points in Figure 9 are different from the data used for
identification.

FIGURE 9. Relative error (23) of Koopman-based prediction of
dictionaries identified by RFB-EDMD with ϵ ≈ 0 (left) and ϵ = 1 (right) for
system (22).

B. VAN DER POL OSCILLATOR REVISITED
Here we revisit the Van der Pol oscillator to illustrate the
advantages of RFB-EDMD algorithm in addressing the chal-
lenges in Section III. To apply the RFB-EDMD algorithm,
we use the data described in Example 1. The search space is
also the 45-dimensional space of all polynomials up to degree
8. To alleviate the build up of round-off errors, we do a linear
transformation on Dpol described in Example 1 to build the
dictionary D such that the columns of D(X ) are orthonormal
(cf. Remark 6).
We apply the RFB-EDMD and T-SSD algorithms on the

dictionary and data for different values of ϵ ∈ [0, 1].
Figure 10 shows the dimension of the identified subspaces
by RFB-EDMD, Lϵ = span(Dϵ) (where Dϵ is defined
in (14)), and the identified subspaces by T-SSD versus the
value of the accuracy parameter ϵ. Figure 10 shows the
accuracy hierarchy on identified subspaces by RFB-EDMD.
Moreover, based on Figure 10, one can easily see that T-SSD
has a more aggressive pruning and does not lead to an
accuracy hierarchy (nested subspaces with respect to ϵ),
since clearly the dimension of the identified subspaces is not
monotonic with respect to ϵ. This validates the observations
in Remark 10 regarding the differences between RFB-EDMD
and T-SSD. For ϵ ≈ 0, cf. Remark 8, the identified
subspace contains only constant functions, which is a trivial
invariant subspace under the Koopman operator and does
not provide any dynamical information. Therefore, one is
required to allow for some error in the approximation to
obtain information about the system’s behavior.

To show the prediction accuracy of models built on the
identified RFB-EDMD subspaces on the points in state space,
we rely on the relative error (23). Figure 11 shows the
error on the domain [−3, 3]2 for different values of the
accuracy parameter ϵ. It is clear that the prediction accuracy
improves as one enforces a tighter invariance proximity by
decreasing ϵ.

To show the capabilities of RFB-EDMD in accurately
approximating Koopman eigenfunctions, we focus on the
case with ϵ = 0.02. In this case, RFB-EDMD identifies
a 5-dimensional subspace containing five approximated
eigenfunctions. The first eigenfunction φ1(x) ≡ 1 is a
trivial Koopman eigenfunction with eigenvalue λ1 = 1.
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FIGURE 10. Dimension of identified subspaces by RFB-EDMD and T-SSD
versus the value of the accuracy parameter ϵ ∈ [0, 1] for system (10).

FIGURE 11. Relative error (23) of Koopman-based prediction of
dictionaries identified by RFB-EDMD with various values of the accuracy
parameter ϵ for system (10).

This is the only exact Koopman eigenfunction in the search
space. Additionally, the algorithm approximates two pairs of
complex-conjugate eigenfunctions. Figure 5 in Section III
shows an eigenfunction from the first pair. Figure 12
shows an eigenfunction from the second pair, which capture
information about the attractiveness of the limit cycle (note
the parallelism with the phase portrait of the Van der Pol
oscillator in Figure 1).

C. DUFFING EQUATION
Consider the Duffing equation (see e.g., [72, Example 4.2])

ẋ1 = x2,

ẋ2 = −0.5 x2 + x1 − x31 , (24)

where the state x = [x1, x2]T belongs to M = [−2, 2]2.
We aim to identify Koopman eigenfunctions and invariant
subspaces associated to the discretization of the system with

FIGURE 12. Absolute value (left) and phase (right) of the approximated
eigenfunction with eigenvalue λ = 0.9858 + 0.0080j identified by
RFB-EDMD with ϵ = 0.02 for system (10).

FIGURE 13. Dimension of identified subspaces by RFB-EDMD and T-SSD
versus the value of the accuracy parameter ϵ ∈ [0, 1] for system (24).

time step 1t = 2.5× 10−2s. To gather data, we simulate the
system 5000 times with initial conditions uniformly sampled
from state space M. Each simulation lasts for 1s and the
trajectories are sampled with timestep 1t . This procedure
results in data snapshot matrices X ,Y ∈ RN×2, with N =
2 × 105. We use the same search space as the one in
Section VII-B, with the dictionary D normalized according
to Remark 6 to make the columns of D(X ) orthonormal.
We apply the RFB-EDMD algorithm on the dictionary

and data for different values of ϵ ∈ [0, 1] and compare it
with the T-SSD algorithm. Figure 13 shows the dimension
of the identified RFB-EDMD subspaces Lϵ = span(Dϵ)
(where Dϵ is defined in (14)) versus the dimension of T-SSD
subspaces for different values of the accuracy parameter
ϵ. The plot clearly shows the accuracy hierarchy on the
identified subspaces by RFB-EDMD and also confirms the
advantages of RFB-EDMD over T-SSD as mentioned in
Remark 10.

In order to illustrate the prediction accuracy of
RFB-EDMD models on individual points in state spaceM,
we use the relative error (23). Figure 14 shows the relative
error for different values of the accuracy parameter ϵ. Clearly,
the prediction accuracy improves as one enforces a tighter
invariance proximity by decreasing ϵ.
To illustrate the usefulness of RFB-EDMD in approxi-

mating eigenfunctions, we focus on the subspace identified
with ϵ = 0.01, which has dimension 3. The identified space
contains one exact eigenfunction φ(x) ≡ 1, which is a trivial
Koopman eigenfunction. The subspace also contains two
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FIGURE 14. Relative error (23) of Koopman-based prediction of
dictionaries identified by RFB-EDMD with various values of the accuracy
parameter ϵ for system (24).

FIGURE 15. Approximated eigenfunction via RFB-EDMD with ϵ =

0.01 with eigenvalue λ = 0.9833 (left) associated with system (24) along
with corresponding vector field (right).

real-valued approximated eigenfunctions. Figure 15 shows an
approximated eigenfunction along with the system’s phase
portrait to show how it captures the behavior of the vector
field. Moreover, since the eigenvalue is inside the unit circle,
by the temporal linearity of eigenfunctions (5), one can
deduce that the system trajectories converge to the zero-level
sets of the eigenfunction, which is in agreement with the fact
that the system has attractive equilibria at (−1, 0) and (1, 0).

D. YEAST GLYCOLYSIS
Here, we turn our attention to a non-planar nonlinear
system with a 7-dimensional state space describing yeast
glycolysis [99], [100], [101],

ẋ1 = 2.5− 100
x1 x6

1+ ( x6
0.52 )

4 ,

ẋ2 = 200
x1 x6

1+ ( x6
0.52 )

4 − 6 x2(1− x5)− 12 x2x5,

FIGURE 16. Dimension of identified subspaces by RFB-EDMD and T-SSD
versus the value of the accuracy parameter ϵ ∈ [0, 1] for system (25).

ẋ3 = 6 x2(1− x5)− 16 x3(4− x6),

ẋ4 = 16 x3(4− x6)− 100 x4x5 − 13(x4 − x7),

ẋ5 = 6 x2(1− x5)− 100 x4x5 − 12 x2x5,

ẋ6 = −200
x1 x6

1+ ( x6
0.52 )

4 + 32 x3(4− x6)− 1.28 x6,

ẋ7 = 1.3 (x4 − x7)− 1.8 x7, (25)

where x = [x1, . . . , x7]T is the state vector. These correspond
to the equations and parameter values from [100]. Our aim
is to use RFB-EDMD to approximate Koopman invariant
subspaces associated with the system’s discretization with
timestep 1t = 0.05 s. To gather data, we simulate the system
from 1000 initial conditions uniformly selected from [0, 1]7.
We run each simulation for a duration of 3s and sample
each trajectory based on timestep 1t and form data snapshot
matrices X ,Y ∈ RN×7 with N = 6 × 104. In addition,
we consider the space of all polynomials up to degree 4 over
the state space. This space has dimension 330. We use a
dictionary D to span this subspace such that the columns of
D(X ) are orthonormal, cf. Remark 6.

We apply the RFB-EDMD and T-SSD algorithms with
different values of ϵ ∈ [0, 1]. Figure 16 shows the accuracy
hierarchy on the subspaces identified by RFB-EDMD
(cf. Remark 9) while T-SSD does not lead to an accuracy
hierarchy. Moreover, T-SSD significantly overprunes the
subspace confirming the statements in Remark 10. Clearly,
enforcing a higher level of accuracy by choosing a smaller
value for ϵ leads to smaller subspaces for both algorithms.

Unlike in the previous 2-dimensional examples for which
we could plot the errors on the state space, in the current
example we rely on statistical plots due to the higher
dimensional nature of the system. To this end, we generate
a test data set, by uniformly choosing 104 data points in the
space [0, 1]7, and apply the relative error (23) of Koopman-
based predictors on identified subspaces by RFB-EDMD
given different values of ϵ ∈ [0, 1]. Figure 17 shows
the histogram plots of errors over the test data set. For
ϵ ≈ 0, cf. Remark 8, the algorithm identifies the maximal
Koopman-invariant subspace in the search space, which has
dimension one and contains all constant functions, therefore
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FIGURE 17. Histogram plot of relative error (23) of Koopman-based
predictor over 104 points randomly selected from [0, 1]7 associated with
dictionaries identified with various values of the accuracy parameter ϵ for
system (25).

the prediction on this space is exact. By increasing the value
of ϵ, the dimension of the identified space increases while the
prediction accuracy decreases, consistent with the accuracy
hierarchy on identified subspaces. It should be noted that
unlike the consistency index (cf. Theorem 1) which bounds
the relative error in function norms, the error in (23) measures
the error on individual points. Therefore, one can see in
Figure 17 that the error in (23) can go above 100% while the
consistency index is always in [0, 1] (cf. Lemma 2).

VIII. CONCLUDING REMARKS AND OUTLOOK
We have introduced RFB-EDMD, an iterative algorithm that
searches through a vector space of functions to find subspaces
that are approximately invariant under the Koopman operator
associated with a dynamical system. One can tune the
accuracy of the approximation by choosing an accuracy
parameter. We have provided a complete convergence and
accuracy analysis for the RFB-EDMD algorithm and proved
that it always captures correct Koopman eigenfunctions
within the search space. We next discuss a few important
questions that need to be addressed in the future.

A. CHOOSING THE SEARCH SPACE
The RFB-EDMD algorithm can search through any
finite-dimensional vector space of functions as long as
Assumption 1 holds. However, the identified subspaces

depend on the original search space. Naturally, the richer
the search space, the more information one can extract.
An important challenge is how to choose the search space
based on information about the system to make sure that
the space is rich enough to capture necessary information
while not leading to large round-off errors as a result of ill-
conditioned matrices often associated with some families of
functions (e.g., polynomials).

B. CAPTURING THE SYSTEM’S FULL STATE
To completely predict the system’s behavior, one needs to
capture the full state of the system. In the RFB-EDMD
algorithm, the accuracy level can be chosen such that the state
observables are within the identified subspace or are close to
it akin to the optimization method used in [87]. It is important
to note that such finite-dimensional approximations have
their own theoretical limitations [69] and often come at the
cost of approximation errors that might accumulate in long-
term predictions. Therefore, it is imperative to study the
behavior of themodels inmulti-step prediction. Such analysis
requires stronger assumptions about the underlying system,
as compared to the mild rank condition, cf. Assumption 1,
used here.

C. LEARNING THE BEST COORDINATES FOR
REPRESENTATION
State is a fundamental system property and does not
depend on a fixed coordinate. Generally, the choice of
coordinates for representing the system’s state is based
on ease of representation, geometric/physical properties
(position, momentum, etc), or the choice of sensors used
for measurement. However, the aforementioned reasons do
not apply to Koopman-based methods which work with
function evolutions instead of directly describing the system’s
trajectories. This leads to the important question of how to
choose/learn the appropriate coordinate system to capture
the system behavior on low-dimensional vector spaces of
functions. Although, previous research (e.g., [102]) provides
a partial answer to this question for systems with specific
attractors, to the best of our knowledge there is no definite
algorithmic solution to choose appropriate coordinates for
finite-dimensional Koopman-based approximations for gen-
eral nonlinear dynamical systems.

D. FOCUSING ON FUNDAMENTAL SYSTEM PROPERTIES
INSTEAD OF FULL STATE REPRESENTATION
As we mentioned above, there are limitations associated
with finite-dimensional Koopman-based models that capture
the system’s full state. Interestingly, the full knowledge
of the system is not required for many applications. For
example, one might be interested in finding conservation
laws and geometric constraints, which correspond to Koop-
man eigenfunctions with eigenvalue equal to one and do
not require complete reconstruction of the system’s state.
Another important example in systems and control theory is
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deciding the stability of attractors. Generally, one can address
this problem through finding appropriate eigenfunctions [27]
or building Lyapunov functions based on Koopman-operator
theory [29], which again do not require reconstruction of the
system’s state.
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APPENDIX
Here, we provide the proof of Proposition 1.
Proof A1 (Proposition 1): For convenience, let S =

span(D1) = span(D2). Note that as a result of Assumption 1,
one can guarantee that the elements of D1 andD2 are linearly
independent. Thus, D1 and D2 form bases for S. Hence,
there exists an invertible matrix R ∈ RNd×Nd such that
D1(·) = D2(·)R. Therefore, based on the definition of v1 and
v2, one can write

Rv1 = v2. (26)

Moreover, based on [84, Lemma 7.1], we have

K1 = R−1K2 R. (27)

As a result of the relationship between the dictionaries, and
equations (26)-(27), one can write

PKf ,1(·) = D1(·)K1v1 =
(
D2(·)R

)(
R−1K2R

)(
R−1v2

)
= D2(·)K2v2 = PKf ,2(·),

concluding the proof. □
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